
S. I I J I M A ,  S. K I M U R A  AND M. GOTO 257 

COWLEY, J. M. & IIJIMA, S. (1972). Z. Naturforsch. 27a, 
445-451. 

GATEHOUSE, I .  M. t~ WADSLEY, A. D. (1964). Acta Cryst. 
17, 1545-1554. 

GRUEHN, R. & NOR/N, R. (1967). Z. anorg, allgem. Chem. 
355, 176-181. 

GRUEHN, R.. & NOR/N, R. (1969). Z. anorg, allgem. Chem. 
367, 209-218. 

hJIMA, S. (1973). Acta Cryst. A29, 18-24. 
hJIMA, S. t~ ALLPRESS, J. G. (1973). J. Solid State Chem. 7, 

94-105. 
hJIMA, S. t~; ALLPRESS, J. G. (1974a). Acta Cryst. A30, 22- 

29. 
IIJIMA, S. & ALLPRESS, J. G. (1974b). Acta Cryst. A30, 29-36. 

IIJIMA, S., KIMURA, S. • GOTO, M. (1973). Acta Cryst. A29, 
632-636. 

KIMURA, S. (1973). J. Solid State Chem. 6, 438-449. 
NIMMO, K. M. & ANDERSON, J. S. (1972). J. Chem. Soc. 

Dalton, pp. 2328-2337. 
NOR/N, R.. (1963). Acta Chem. Scand. 17, 1391-1404. 
NOR/N, R. (1965). Acta Chem. Scand. 20, 871-880. 
ROTH, R. S. & WADSLEY, A. D. (1965). Acta Cryst. 18, 724- 

730. 
SCI-L~FER, H., BERGNER, D. d~ GRUEHN, R. (1969). Z. anorg. 

allgem. Chem. 365, 31-50. 
WADSLEY, A. D. & ANDERSSON, S. (1970). Perspectives in 

Structural Chemistry, Edited by J. D. DUMTZ and J. A. 
IBERS, Vol. 3. New York: John Wiley. 

Acta Cryst. (1974). A30, 257 

The Use of Symmetry with the Fast Fourier Algorithm 

BY DAVID A. BANTZ AND MARTIN ZWlCK 

Department of  Biophysics, The University of  Chicago, Chicago, Illinois 60637, U.S.A. 

(Received 9 August 1973; accepted 14 September 1973) 

This paper presents an algorithm for making use of symmetry in the fast Fourier transform in a simple 
and general way which is applicable to nearly all space groups. This allows one to reduce storage re- 
quirements to approximately what is needed for an asymmetric unit of the electron-density function, 
and hence makes possible economical forward and reverse transforms of large unit cells in core. 

Introduction 

In recent years the 'Fast Fourier Transform' (FFT) of 
Cooley & Tukey (1965) has been increasingly applied 
to problems in crystallography and electron micros- 
copy. A consideration limiting its use, however, has 
been the fact that, while Friedel symmetry may be 
conveniently incorporated into the algorithm, it has 
only recently been possible to make use of space-group 
symmetry to reduce storage and computing time re- 
quirements. The storage problem is more serious since 
it frequently happens, particularly for crystals of large 
biological molecules, that the available core storage is 
not sufficient to include the entire unit cell, which is 
what the fast Fourier algorithm normally requires• Ex- 
ceeding the core limitations forces one to use a more 
complex and time-consuming form of the algorithm 
which uses tape or disk for  storage (Gentleman & 
Sande, 1966; Brenner, 1968, 1972; Singleton, 1968; 
Hubbard & Quicksall, 1970). The net result of not 
using space-group sym-metry and having to include the 
entire unit cell in the transform is to erode the savings 
possible with the FFT; indeed, for high-symmetry 
space groups, the fast Fourier method may not have a 
significant advantage over conventional algorithms, 
and may even be costlier. For these reasons, an ap- 
proach which allows the FFT to make use of space- 
group symmetry is of some value, as this could provide 

the storage factor necessary to allow the computa- 
tions to be done in-core. 

We present such an approach. A method which bears 
some similarities to the procedures we set out here, has 
been proposed by Ten Eyck (1973), who has analyzed 
how the fast Fourier algorithm might be modified to 
include various possible symmetries. The present ap- 
proach differs from Ten Eyck's in being simpler and 
more general since only standard, unmodified, fast 
Fourier subroutines are used. On the other hand, it 
suffers from the disadvantage of making full use of 
symmetry only for storage, but not for time reductions. 

Procedure 

For space-group symmetry with N general positions 
given by rotations and translations, S j and t j, j =  1, 
• . . ,  N, the electron-density function and its transform 
have the symmetry, 

Q(SJx +tJ) =Q(x) (1) 
and 

since 
F(SJh)=exp (-2zcih.  t~)F(h) (2) 

SJh. x = h.  Six = h.  (x j -  t J). (3) 

Centering is included in these equations by operations 
of the form [S J, t j + , ]  where ,  is the appropriate trans- 
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lation. For example, in C-centered cells, general posi- 
tions occur in pairs: [SJx+tJ ,  SJx+tJ+X]  where x= 

1 _1. . . .  +(~,2,0) and j =  1 N/2. Note that this gives, via 
equation (2), the expected systematic absences. A 
related treatment of these symmetry equations has been 
given by Bienenstock & Ewald (1962). 

We can use (1) and (2) to generate a complete set of 
data from an asymmetric unit (a.u.) in real or recip- 
rocal space,'t" i.e. we need roughly 1IN of the complete 
set (slightly larger because the boundary of the a.u. 
must be included). We can make use of the symmetry 
in the transform by calculating, for each/ ,  

a,(x,y) = ~ ~ F,(h,k) [exp 2rci(hx + ky)l , (4) 
h k 

where h and k range over the whole hk plane, and the 
two-dimensional Ft(h,k) are generated from a refer- 
ence array of the a.u. F(h,k, l)  by equation (2). The 
electron-density function is then obtained by a series 
of one-dimensional transforms on G~(x,y): 

Qxy(Z) = ~] G:,~,(l) exp (2rcilz). (5) 

This mixed function, G, we write variously as G~(x,y) 
and Gx.y(l) to emphasize that the calculation takes 
place in two stages: a series of two-dimensional Fourier 
syntheses in which we transform between real space 
(x,y) and reciprocal space (h,k), and a series of one- 
dimensional transforms, in which (x,y) are held fixed 
and we transform on z or I. These one-dimensional 
transforms need only be done for (x,y) in the asym- 
metric unit of real space, and hence the G~(x,y) need 
only be saved for these values of (x,y). This very simple 
fact is the basis for the present approach. 

Let us consider the storage requirements for Q, F, 
and G. The asymmetric unit in Q requires about 
n:,. ny. nz/N real storage elements where 1/nx is the 
sampling interval along the x axis, and similarly for 
ny and nz. The domain in reciprocal space which can 
be used to generate Q is, like the real-space cell, defined 
by a parallelepiped of n~. ny. nz points, and thus the 
asymmetric unit for the F's is again about nx • n,,. nJN  
points. If the F 's  are real, this is the number of stan- 
dard-length storage elements needed; if they are com- 
plex, Friedel symmetry reduces the number of points 
by ½, and gives the same requirement for storage. 

We now consider the storage requirements for 
G(x,y,l). From equation (5), it is clear, from the reality 
of Q, that 

G~y(- I )=GL(I )  . (6) 

This means that equation (4) need be evaluated only 
for l>_0. 

Equation (4) gives us, for any /, values of Gt(x,y) 
for the full plane of n~,. ny points, but because of the 
space-group symmetry, we need save only a fraction, 

t Naturally we also make use of the reality of O, and the 
consequent Hermifian symmetry of F. 

nx. ny/M (M< N) of these values, for use in the sub- 
sequent one-dimensional Fourier of equation (5). The 
same domain of G in xy is saved, for each l, thus reduc- 
ing, at this point, the total storage requirements for 
G(x,y, l) to nx. ny. n~/M. In addition mirror planes nor- 
mal to z will result in G being real (if the mirror is at 
z=0 )  or of known phase, and yield a further reduc- 
tion in storage requirements by a factor of two.~ We 
shall show that in most cases M or 2M is equal to N. 
More specifically, for all space groups not rhombo- 
hedral or cubic, all N general positions can be used to 
reduce the storage requirements of G to nx. ny. nz/N 
values, i.e. the same number needed for Q and F. 

This results from the fact that, except for the two 
cited systems, S J(1,3) = S J(2, 3) = S J(3, 1) = S J(3, 2) = 0 
and S J(3, 3)= + 1 for all j ;  i.e. [SJ,t J] are given by 

0 +1 t~ . 

(7) 

From equation (1), all [SJ,t J] operations of the above 
form which differ in one or more of the a, b, c, d, tx, 
ty variables can be used to reduce the domain of x, y 
for which Gt(x,y) must be saved and the Fourier trans- 
form ofequation (5) calculated.{} [SJ,t J] operations 
differing only in the sign of S(3,3) and (perhaps) tz 
represent mirror planes normal to z; in this case, 
Gz(x,y) has known phase and hence we need save 
only the magnitude of G (see footnote ~). The net effect 
of all this is that the total storage for G will be ap- 
proximately the same as that needed for the asymmetric 
unit of F or Q. 

The computational procedure used is outlined sche- 
matically in Fig. 1. The asymmetric unit of F is stored 
in planes of l, for l___ 0. For each l, equation (2) is used 
to generate a complete Fz(h,k) plane in a two-dimen- 
sional working array (a). The two-dimensional trans- 
form of this function is taken in place to give G~(x,y) 
for the complete x ,y  plane. Only the portion of this G 
array needed for the calculation of Q need be retained. 
Since the values of the asymmetric unit Ft(h, k) are re- 
quired only for the calculation of Gz(x,y), the portion 
of the G array to be retained may be stored in the same 
locations as the a.u. F~(h,k). When this procedure is 
done for all l, and the asymmetric unit F 's  fully re- 
placed by G's, G:,y(l) values are collected for each (x,y) 
in the asymmetric unit and the one-dimensional trans- 
form of equation (5) is performed (b). A working ar- 
ray is used for this calculation, but the resulting Qxy(z) 

:1: If the mirror is at z=m, let O'(z)=o(z+m) and G'(l) be 
the transform of 0'. Then 0' is centric, G' is real and Gxy(l)= 
exp [-2rcilm]. G'(I). Thus we need save only the (signed) 
magnitude of G'(l) rather than a complex value. The phase of 
G is given by the equation just cited; this is what we mean by 
'known phase'. 

§ If hexagonal axes are used for the rhombohedral space 
gxoups all [SJ, tq will be of the form given in equation (7). 
For cubic space groups, one third of the general positions are 
of this type and can be used for storage reduction. 
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values are again stored in place of the corresponding 
Gxy(l) array. Thus, the same storage area is used for 
the asymmetric unit of F, for the reduced G array, and 
for the final asymmetric unit of Q. 

In the description given here (and in the program to 
be described below) we make use of, for the small one- 
and two-dimensional transforms, a perfectly general 
fast Fourier routine, incorporating at most Friedel 
symmetry. While this procedure is then immediately 
applicable to any space-group symmetry, simply by 
specifying the set of [S j, tq, it would be possible to use 
more complicated fast Fourier algorithms which make 
intrinsic use of some symmetry, as described by Ten 
Eyck (1973). 

The above procedure is readily 'reversed' so that we 
easily calculate the inverse transform, Q(xyz) --~ F(hkl) 
by series of one-dimensional (inverse) transforms on z 
to yield Gxy(l) followed by two-dimensional (inverse) 
transforms. That is, we simply invert equations (5) 
and (4). Again, we need only store, at any one time, an 
asymmetric unit of data. The ability to transform back 
and forth economically between real and reciprocal 
space makes practical some new approaches to direct 
methods [see, for example, Barrett & Zwick (1971)]. 

While full use is made of the space-group symmetry 
to reduce storage requirements (except for the cubic 
system), the time needed for the transform is only 
slightly less than that of an nx. ny. nz point in-core 

: ! 

: Fr(h;k) G/,(x,y) : 

1=0 

F(h,k,I) (a) G(x,y,I) 

nz /= -E+ I~  

/ = 2 ~  

/=1 

/=0 

G(x,y,I) 

(5) 

Gxv(/) pxv(Z) 
(b) 

p(x,y,z) 

Fig. 1. Schematic representation of transform from F(h,k ,1)  to 
o ( x , y , z ) .  Shaded portions of arrays indicate the portion 
actually stored; numbers in parentheses indicate equations 
in the text. (a) Transform, plane by plane, to obtain G,(x ,y) .  
(b) One-dimensional transforms from Gz(x,y) t o  O(x,y,z). 
Asymmetric units in xy or hk need not actually be parallel- 
ograms. 

fast Fourier transform. The calculation consists of 
(n=/2+ 1) two-dimensional transforms of size n=. ny 
[equation (4)] followed by nx. nr/M one-dimensional 
transforms of size nz, and thus time savings are only 
achieved in the second stage of the calculation. If, 
following Ten Eyck, we used two-dimensional sym- 
metry in the two-dimensional transform steps, further 
time savings would be possible. The advantage of the 
present approach is the generality of this algorithm 
for all space groups. 

To estimate the time required for this calculation, 
assume n==ny=nz=n=2 k. We assume a routine which 
utilizes Friedel symmetry is used. The time for a full 
n a point transform with the standard fast Fourier 
procedure is proportional to n 3 log2 n 3= 23k . 3k (Coo- 
ley & Tukey, 1965). The above algorithm requires a 
time proportional to 2(n/2+l)n 2 log2 n2~--2ak2k for 
the two-dimensional transforms (where the additional 
factor of two results from the absence of Friedel sym- 
metry in these transforms) plus n 2. n log2n/M= 
2akk/M for the one-dimensional transforms which do 
have Friedel symmetry. The ratio of these two times, 
which is the time reduction factor relative to the non- 
symmetry-utilizing FFT, is 

23k(2k + k/M) 
23k(3k) 

and clearly cannot be less than 2. The time savings 
relative to conventional Fourier algorithms are, of 
course, much greater. In fact, the most time-consum- 
ing portion of calculating electron-density maps with 
the fast Fourier is often printing the map in suitable 
format. 

A program, called CHAFF, implementing this al- 
gorithm, space-group independent and for arbitrary 
dimensions (not restricted to powers of 2) has been 
written in FORTRAN.  It takes transforms in either 
direction and while only the asymmetric unit of F or Q 
is stored, the user can easily access (for input or out- 
put) any symmetry-related (h,k,l) or (x,y,z). Thus, 
although the data is stored in an asymmetric unit 
chosen for convenience in the calculation (0 < z < 1 or 
0 _< z < ½ for centric space groups and a domain in xy 
approximately 1/M of the plane), for purposes of input 
and output or modifying values, the user can use any 
definition of asymmetric unit he or she chooses. 

This program is currently being used for Patterson 
and Fourier calculations on yeast t R N A ~  t, space 
group P6422 (Schevitz, Navia, Bantz, Cornick, Rosa, 
Rosa & Sigler, 1972). Actual storage requirements and 
running times on an IBM-360/195 are given in Table 1. 
For comparison, figures are also shown for the in-core 
non-symmetry-utilizing fast Fourier based on a pro- 
gram of N. Brenner and a disk version of this program 
which we have also implemented. The core require- 
ments include subroutines for output of maps, but the 
times shown do not include time for this output. 

For many applications, the algorithm described here 
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Table 1. Storage and time requirements for different fast Fourier algorithms (IBM 360/195) 

Times for taking a transform and total core requirements using three fast-Fourier programs. CHAFF is the symmetry-utilizing 
in-core program described in this paper. Since IN-CORE and DISK do not use symmetry, transform times and core requirements 
are space-group independent. Numbers in parentheses are extrapolated. The times listed include the time for initialization and 
data input before transform. This is roughly proportional to the number of reflections. 

CHAF IN- CO RE DISK 

Space Time Core* Time~ Core* Time Core* 
group Dimensions (sec) (bytes) (sec) (bytes) (sec)  (bytes) 

32.32.32 1-6 148k 1.7 222k 11.7 138k 
P6222 32.32.33 1.8 148k 3.3 352k - t  - t  

64.64.72 6.7 288k ( 2 5 )  (2392k) - t  - t  

16.16.32 1.2 134k 1.3 122k 4"3 l14k 
P2a2121 32.32"32 2.2 174k 2.2 222k 11.7 138k 

64-64.32 5-0 328k 4.5 614k 89.1 234k 
64-64-64 7.4 464k (7) (1142k) (160) (234k) 

32.32.32 1.7 156k 1.4 222k 10.8 138k 
1422 64"64"64 6"5 258k (7) ( 1 1 4 2 k )  (160) (234k) 

64"64"96 8"8 296k ( 4 0 )  (3128k) - t  -'i" 

* Numbers include buffer space which can be reduced slightly with some loss of efficiency. A 'k' of storage is 1024 bytes; a 
byte is an 8-bit unit of storage. Maximum storage available varies from one installation to another, but at present rarely exceeds 
about 1000k. 

t DISK program requires powers of 2. 
The IN-CORE program uses a less efficient Fourier routine if any dimension is not a power of 2. It could be modified to 

reduce time to approximately that of CHAFF. 

will allow Fourier  calculations to be done without  the 
use of  external storage, or, if the entire unit cell will 
fit into available core, with far less storage than other- 
wise required. For  very large unit  cells, however, even 
an asymmetric unit  may be too large to be accom- 
modated  in core. For  such cases the CHAFF algor i thm 
could be modified to utilize external storage (this has 
not  actually been implemented) and since only an 
asymmetric unit  of  data is needed, inpu t -ou tpu t  costs 
would be approximately 1/M of  that  required for the 
non-symmetry-uti l izing program (called DISK in 
Table 1). 
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